Problem 16.6

There is a small flaw in Example 16.1 (page 686). In Equation (16.14) I omitted a constant of integration, so the equation should really have read $f(x)-g(x)=k$. Show that this still gives the same final answer (16.15).

Solution

The aim is to solve the wave equation for a string with a certain shape initially that's released from rest. Skip to page 3 to get on with the problem.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=u_{0}(x) \\
& \frac{\partial u}{\partial t}(x, 0)=0
\end{aligned}
$$

Because it needs to be solved over the whole line ($-\infty<x<\infty$), the method of operator factorization can be applied here. Bring both terms to the left side.

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Write the left side as an operator applied to u.

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}\right) u=0
$$

The operator is a difference of squares, so factor it.

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u=0 \tag{1}
\end{equation*}
$$

If we set

$$
v=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u
$$

then equation (1) becomes

$$
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) v=0 .
$$

As a result of using the method of operator factorization, the wave equation has reduced to a system of first-order PDEs, which can each be solved with the method of characteristics.

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=v \\
\frac{\partial v}{\partial t}+c \frac{\partial v}{\partial x}=0
\end{array}\right\}
$$

Since $v=v(x, t)$ is a two-dimensional function, it's differential is defined as

$$
d v=\frac{\partial v}{\partial t} d t+\frac{\partial v}{\partial x} d x
$$

Dividing both sides by $d t$ yields the fundamental relationship between the total derivative of v with respect to t and its partial derivatives.

$$
\frac{d v}{d t}=\frac{\partial v}{\partial t}+\frac{d x}{d t} \frac{\partial v}{\partial x}
$$

Along the characteristic curves in the $t x$-plane defined by

$$
\begin{equation*}
\frac{d x}{d t}=c, \quad x(0)=\xi, \tag{2}
\end{equation*}
$$

where ξ is a characteristic coordinate, the PDE for v reduces to an ODE.

$$
\begin{equation*}
\frac{d v}{d t}=0 \tag{3}
\end{equation*}
$$

Integrate both sides of equation (2) with respect to t.

$$
x=c t+\xi \quad \rightarrow \quad \xi=x-c t
$$

Now solve for v by integrating both sides of equation (3) with respect to t.

$$
v(\xi, t)=f(\xi)
$$

Here f is an arbitrary function of ξ. Now that v is known, change back to the original variables.

$$
v(x, t)=f(x-c t)
$$

Consequently, the PDE for u is

$$
\frac{\partial u}{\partial t}-c \frac{\partial u}{\partial x}=f(x-c t) .
$$

Similar to v, the relationship between the total derivative of u with respect to t and its partial derivatives is

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{d x}{d t} \frac{\partial u}{\partial x} .
$$

Along the characteristic curves in the $t x$-plane defined by

$$
\begin{equation*}
\frac{d x}{d t}=-c, \quad x(0)=\eta, \tag{4}
\end{equation*}
$$

where η is another characteristic coordinate, the PDE for u reduces to an ODE.

$$
\begin{equation*}
\frac{d u}{d t}=f(x-c t) \tag{5}
\end{equation*}
$$

Integrate both sides of equation (4) with respect to t.

$$
x=-c t+\eta \quad \rightarrow \quad \eta=x+c t
$$

Use this result to eliminate x from equation (5).

$$
\frac{d u}{d t}=f(-2 c t+\eta)
$$

Solve for u by integrating both sides with respect to t.

$$
u(\eta, t)=\int^{t} f(-2 c s+\eta) d s+G(\eta)
$$

Here G is another arbitrary function. Evaluate the integral, noting that the integral of an arbitrary function is another arbitrary function.

$$
u(\eta, t)=F(-2 c t+\eta)+G(\eta)
$$

Now that u is known, change back to the original variables.

$$
u(x, t)=F(x-c t)+G(x+c t)
$$

The general solution to the wave equation over the whole line is the sum of a wave travelling to the right and a wave travelling to the left. Differentiate it with respect to t.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial t} F(x-c t)+\frac{\partial}{\partial t} G(x+c t) \\
& =F^{\prime}(x-c t) \frac{\partial}{\partial t}(x-c t)+G^{\prime}(x+c t) \frac{\partial}{\partial t}(x+c t) \\
& =F^{\prime}(x-c t)(-c)+G^{\prime}(x+c t)(c) \\
& =-c F^{\prime}(x-c t)+c G^{\prime}(x+c t)
\end{aligned}
$$

Apply the initial conditions now to determine F and G.

$$
\begin{aligned}
u(x, 0) & =F(x)+G(x)=u_{0}(x) \\
\frac{\partial u}{\partial t}(x, 0) & =-c F^{\prime}(x)+c G^{\prime}(x)=0
\end{aligned}
$$

Differentiate both sides of the first equation, and divide both sides of the second equation by c.

$$
\begin{align*}
F^{\prime}(x)+G^{\prime}(x) & =u_{0}^{\prime}(x) \tag{6}\\
-F^{\prime}(x)+G^{\prime}(x) & =0 \tag{7}
\end{align*}
$$

Add the respective sides of equations (6) and (7) to eliminate $F^{\prime}(x)$.

$$
2 G^{\prime}(x)=u_{0}^{\prime}(x)
$$

Divide both sides by 2 .

$$
G^{\prime}(x)=\frac{1}{2} u_{0}^{\prime}(x)
$$

Integrate both sides with respect to x.

$$
G(x)=\frac{1}{2} u_{0}(x)+C_{1}
$$

Subtract the respective sides of equations (6) and (7) to eliminate $G^{\prime}(x)$ instead.

$$
2 F^{\prime}(x)=u_{0}^{\prime}(x)
$$

Divide both sides by 2 .

$$
F^{\prime}(x)=\frac{1}{2} u_{0}^{\prime}(x)
$$

Integrate both sides with respect to x.

$$
F(x)=\frac{1}{2} u_{0}(x)+C_{2}
$$

These formulas for $F(x)$ and $G(x)$ are really formulas for $F(w)$ and $G(w)$, where w is any expression we wish.

$$
\begin{aligned}
& F(w)=\frac{1}{2} u_{0}(w)+C_{2} \\
& G(w)=\frac{1}{2} u_{0}(w)+C_{1}
\end{aligned}
$$

In the formula for $u(x, t)$, we need $F(x-c t)$ and $G(x+c t)$.

$$
\begin{aligned}
& F(x-c t)=\frac{1}{2} u_{0}(x-c t)+C_{2} \\
& G(x+c t)=\frac{1}{2} u_{0}(x+c t)+C_{1}
\end{aligned}
$$

So then

$$
\begin{aligned}
u(x, t) & =F(x-c t)+G(x+c t) \\
& =\left[\frac{1}{2} u_{0}(x-c t)+C_{2}\right]+\left[\frac{1}{2} u_{0}(x+c t)+C_{1}\right] \\
& =\frac{1}{2}\left[u_{0}(x-c t)+u_{0}(x+c t)\right]+C_{1}+C_{2} .
\end{aligned}
$$

In order for $u(x, 0)=u_{0}(x)$ to be satisfied, it's necessary to set $C_{1}+C_{2}=0$. Therefore,

$$
u(x, t)=\frac{1}{2}\left[u_{0}(x-c t)+u_{0}(x+c t)\right] .
$$

What this means is the initial waveform splits into two waves with half the amplitude, one moving to the right with speed c and the other moving to the left with speed c.

